6 N ov 1 99 8 Intermediate temperature dynamics of one - dimensional Heisenberg antiferromagnets

نویسنده

  • Subir Sachdev
چکیده

We present a general theory for the intermediate temperature (T ) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, Phys. Rev. B 57, 8307), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range becomes very wide for moderate and large values of 2Sp. The coupling constants of the effective model are known exactly in terms of the energy gap above the ground state ∆ (for 2Sp even), or a crossover scale T0 (for 2Sp odd). Analytic and numeric results for dynamic and transport properties are obtained, including some exact results for the spin-wave damping. Numerous quantitative predictions for neutron scattering and NMR experiments are made. A general discussion on the nature of T > 0 transport in integrable systems is also presented: an exact solution of a toy model proves that diffusion can exist in integrable systems, provided proper care is taken in approaching the thermodynamic limit. Typeset using REVTEX 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : c on d - m at / 9 81 10 83 v 2 7 N ov 1 99 8 cond - mat / 9811083 Intermediate temperature dynamics of one - dimensional Heisenberg antiferromagnets

We present a general theory for the intermediate temperature (T ) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, Phys. Rev. B 57, 8307), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range...

متن کامل

Se p 19 99 Calculation of Neel temperature for S = 1 / 2 Heisenberg quasi - one - dimensional antiferromagnets

Isotropic S = 1/2 quasi-one-dimensional antiferromagnets are considered within the bosonization method. The 1/z ⊥-corrections to the interchain mean-field theory (where z ⊥ is the number of nearest neighbors in transverse to chain directions) are obtained for the ground-state sublattice magnetization S 0 and Neel temperature T N. The corrections to T N make up about 25% of mean-field value, whi...

متن کامل

Intermediate temperature dynamics of one - dimensional Heisenberg antiferromagnets

We present a general theory for the intermediate temperature (T ) properties of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev, Phys. Rev. B 57, 8307), we argue that an integrable, classical, continuum model of a fixed-length, 3-vector applies over an intermediate temperature range; this range...

متن کامل

v 2 5 N ov 1 99 7 Finite – size scaling properties and Casimir forces in an exactly solvable quantum statistical – mechanical model 1

Finite–size scaling properties and Casimir forces in an exactly solvable quantum statistical–mechanical model Abstract A d–dimensional finite quantum model system confined to a general hypercubical geometry with linear spatial size L and " temporal size " 1/T (T-temperature of the system) is considered in the spherical approximation under periodic boundary conditions. Because of its close relat...

متن کامل

2 5 N ov 1 99 7 Spin and energy correlations in the one dimensional spin 1 / 2 Heisenberg model

In this paper, we study the spin and energy dynamic correlations of the one dimensional spin 1/2 Heisenberg model, using mostly exact diagonalization numerical techniques. In particular, observing that the uniform spin and energy currents decay to finite values at long times, we argue for the absence of spin and energy diffusion in the easy plane anisotropic Heisenberg model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998